CAPS Convection-Allowing Model Forecasts and Ensemble Consensus Products for the Winter Weather Experiments

> Keith Brewster & Nathan Snook Andrew Berrington, Jun Park, Bryan Carroll, Marshall Baldwin & Ming Xue

> > Center for Analysis and Prediction of Storms University of Oklahoma Norman, Oklahoma

15th HMT Winter Weather Experiment 27 February 2025

CAPS Ensemble Experiment Goals

- Test FV3 CAM ensemble in quasi-operational winter setting: HMT Winter Weather Experiments – Add MPAS for 2025
- Generate CAM ensemble forecasts
- Test various physics combinations for possible operational use such as nascent Rapid Refresh Forecast System
- Evaluate ensemble consensus methods
- Develop machine learning (ML) algorithms to create quantitative rainfall and snowfall forecasts

CAPS Ensemble for 14th WWE (2023-2024) FV3-LAM CAM Ensemble Configuration

- 11 FV3-LAM members
- 3 km grid spacing (GFDL grid)
- 64 vertical levels
- 84-hr forecasts initialized at 00 UTC
- Run at Texas Advanced Computing Center – Frontera
- Total of 30 days run for objective verification and ML training
- Results posted to web: <u>https://caps.ou.edu/forecast/realtime/</u>

14th HMT WWE (2023-24) CAPS Ensemble (11 Members)

Decoding	member	names:
----------	--------	--------

M: Microphysics

- M0 = Thompson
- M1 = NSSL
- **B:** Boundary Layer Scheme
- **B0 = MYNN**
- B1 = Shin-Hong
- B2 = TKE-EDMF
- L: Land Surface Model
- L0 = NOAH
- L1 = NOAHMP
- L2 = RUC
- P: Uses physics perturbations I: Uses IC/LBC perturbations

Some members are configured similarly to operational or experimental models: MOBOL2_P: Similar to RRFSm1

M1B2L2_P: Similar to RRFSmphys8 M0B2L1_P: Similar to GFSv16

Experiment	Microphysics	PBL	Surface	LSM	IC/LBC	AI/ML
	Multi-Physics	s Core Configu	urations, Sai	me IC/LBC		
M0B0L0_P	Thompson	MYNN	MYNN	NOAH	GFS	AI-1
M1B0L0_P	NSSL	MYNN	MYNN	NOAH	GFS	AI-2
M0B0L2_P	Thompson	MYNN	MYNN	RUC	GFS	
M1B2L2_P	NSSL	TKE-EDMF	GFS	RUC	GFS	
M0B2L1_P	Thompson	TKE-EDMF	GFS	NOAHMP	GFS	AI-3
Physics + IC Perturbation Ensemble						
M0B1L0_PI	Thompson	Shin-Hong	GFS	NOAH	GEFS_m1	
M0B2L1_PI	Thompson	TKE-EDMF	GFS	NOAHMP	GEFS_m2	
M0B2L2_PI	Thompson	TKE-EDMF	GFS	RUC	GEFS_m3	AI-4
M1B1L0_PI	NSSL	Shin-Hong	GFS	NOAH	GEFS_m4	
M1B2L1_PI	NSSL	TKE-EDMF	GFS	NOAHMP	GEFS_m5	
M1B2L2_PI	NSSL	TKE-EDMF	GFS	RUC	GEFS_m6	

Sample Case (Core Configurations) – Jan. 15-17 2024

- 24-h forecast of 6-h accumulated snowfall forecasts valid at 00 UTC 16 Jan. 2024
- All core config. members capture the snowfall bands well, with slight variation in placement/intensity of heaviest snow
- Very little difference between ensemble consensus methods (simple mean, PM/LPM mean)
 - Close agreement between members
 - Broad, synoptically-driven features

Sample Case (Core Configurations) – Jan. 15-17 2024

- 48-h forecast of 6-h accumulated snowfall forecasts valid at 00 UTC 17 Jan. 2024
- All members underpredict intensity of heaviest snowfall in VT/NH/ME and fail to capture light snowfall extending south along the Appalachians.

Forecast Verification (Seasonal Summary Statistics)

- Observations used:
 - Total Precipitation: Stage-4 precipitation accumulation
 - Snowfall: NOHRSC Snowfall Analyses
- Software package used: MET-Plus v11.1.0 from the Developmental Testbed Center)
- Metrics include frequency bias and equitable threat score (ETS)
 - Several intensity thresholds are considered to focus on light versus heavy rainfall/snowfall.
 - All verification metrics are calculated using a 30 km neighborhood radius.

Verification: 24-h accumulated precipitation, 1 mm (precip/no-precip)

- Individual member biases vary, but are generally near unbiased (0.8 1.1).
- Simple mean has an overall high bias at 1 mm threshold, as expected due to smoothing
- ETS for ensemble consensus products outperforms individual members for day 2 and especially day 3.

Verification: 6-h accumulated precipitation, 1 mm threshold

- Individual member biases still near unbiased (0.8 1.2), simple mean bias is higher, especially at night.
- PM and especially LPM exhibit very good bias characteristics, day and night.
- Notable diurnal cycle impacts, particularly for bias (high bias maximized during night and early morning).

3.0 2.5 Frequency Bias 1.5 1.0 0.5 Night Night Night Day Day Day 0.6 0.5 0.4 ETS 0.3 0.2 0.1 0.0 12 18 24 30 36 42 54 60 66 78 84 48 72 Lead Time (hr) 25 mm threshold MOBOLO P MOB1LO P M1B0L0 P M1B2L1 PI M1B2L2 PI ENS PM Interpretation: mdt./hvy. rain

Verification: 6-h accumulated precipitation, 25 mm threshold

- Spin up 0-6 h, then high bias during daytime and evening hours, near-neutral bias overnight into the morning hours.
- Diurnal cycle evident in both frequency bias and ETS (ETS highest in early morning hours, lowest in evening).
- Relative member performance varies with lead-time; M0B0L0 and M0B2L1 are among best performers.

Verification: 24-h accumulated snowfall, 1 mm threshold

Verification: 24-h accumulated snowfall, 75 mm threshold

Planned 15th HMT WWE (2024-2025) CAPS Ensemble

Decoding member names:

M: Microphysics

- M0 = Thompson
- M1 = NSSL
- B: Boundary Layer Scheme
- B0 = MYNN
- B1 = Shin-Hong
- B2 = TKE-EDMF

L: Land Surface Model

- L0 = NOAH
- L1 = NOAHMP
- L2 = RUC

```
C: Uses cumulus scheme
```

MP: MPAS member

Some members are configured similarly to operational or experimental models:

M1BOL0_P: Similar to WoFS M1BOL2: Similar to RRFSm1 M0B2L1_P: Similar to GFSv16

M0B0L2_MP: Similar to GSL-01 M1B0L2_MP: Similar to NSSL-01 M0B0L0_MP: Similar to NCAR-01

Experiment	Microphysics	PBL	Surface	LSM	IC/LBC	Cumulus	AI/ML
	FV3-LAM Ensemble (Core Configurations)						
M0B0L0	Thompson	MYNN	MYNN	NOAH	GFS	None	AI-1
M1B0L0	NSSL	MYNN	MYNN	NOAH	GFS	None	AI-2
M1B0L2	NSSL	MYNN	MYNN	RUC	GFS	None	
M0B2L1	Thompson	TKE-EDMF	GFS	NOAHMP	GFS	None	AI-3
M0B0L2	Thompson	TKE-EDMF	MYNN	RUC	GFS	None	AI-4
Experimental MPAS Ensemble							
MOBOL2_MP	Thompson	MYNN	MYNN	RUC	GEFS_m1	None	
M1B0L2_MP	NSSL	MYNN	MYNN	RUC	GEFS_m2	None	
MOBOLO_MP	Thompson	MYNN	MYNN	NOAH	GEFS_m3	None	
M1B0L0_MP	NSSL	MYNN	MYNN	NOAH	GEFS_m4	None	
M1B0L2C_MP	NSSL	MYNN	MYNN	NOAH	GEFS_m5	SA-New-Tiedtke	

Near real-time forecast graphics are available online: https://caps.ou.edu/forecast/realtime/

MPAS Workflow

Sample Case (FV3-LAM Members) – Jan 5-7 2025

15

0.01 0.10 1.00 2.00 3.00 4.00 6.00 8.00 12.00 18.00 24.00 30.00 36.00 48.00 6-Hour Snowfall (in)

23

0.01 0.10 1.00 2.00 3.00 4.00 6.00 8.00 12.00 18.00 24.00 30.00 36.00 48.00 6-Hour Snowfall (in)

6-h Snowfall 00z 06 Jan 2025 NOHRSCv2

24-hour U-net Forecast

0.01 0.10 1.00 2.00 3.00 4.00 6.00 8.00 12.00 18.00 24.00 30.00 36.00 48.00 6-Hour Snowfall (in)

0.01

6-h Snowfall 12z 06 Jan 2025 NOHRSCv2

36-hour U-net Forecast

Machine Learning Component

- Performed in collaboration with NSF AI2ES Institute hosted at OU
- U-Net Convolutional Neural Network (Deep Learning)
- Builds upon earlier ML hail prediction for HWT (2017-2021) and ML rainfall prediction in HMT FFaIR
- Uses 8 HREF (4 each at 00, 12 UTC) and 4 CAPS FV3-LAM members.

ML Methods: U-Net Architecture

- CAPS FV3 Rainfall & Snowfall U-Nets use a collection of 2-D forecast images at different vertical levels as inputs for training.
- Patch size, number of connections, and number of layers are being evaluated as hyper-parameters (the exact details of the architecture shown below will likely change in later iterations).

ML Methods: Input Data (Training & Forecast Generation)

Current version of CAPS Snowfall U-Net uses 35 2-D NWP forecast variables relevant to snowfall prediction

Blue: Variable is • used only for snowfall prediction (not for rainfall)

Red: Variable is • newly-added for 2023-2024 (not used in prior years)

Variable	Level(s) Used (and/or other notes)
Geopotential height	500 hPa
Temperature	500, 700, 850, 925, 1000 hPa; 2 m AGL
Dewpoint	500, 700, 850, 925, 1000 hPa; 2 m AGL
u- and v- wind components	500 hPa; 10 m AGL
6-h maximum reflectivity	1 km AGL
Precipitable water	column-integrated
Hourly maximum updraft velocity	column maximum
6-h accumulated precipitation	
6-h accumulated snowfall	
Echo-top height	
Mean Sea Level Pressure	
Categorical SNOW, ICEP, FRZR, and RAIN	binary yes/no based on PTYPE at surface
Terrain Mean, Standard Deviation, Slope	Source: ASTER Global Digital Elevation Model
Vorticity	850, 500 hPa
Divergence	850, 500 hPa
Moisture Convergence	850 hPa; 10 m AGL
Land Use Classification	Classification source: WSSI Land Use Factor 30

ML Methods: Input Data (Training & Forecast Generation)

- Variables predicted: Probability of 6-h snowfall > 1, 2, and 3 inches, as well as ML ensemble simple mean ("ML best guess").
 - ML-predicted total snowfall (individual members and ensemble consensus) is being developed and evaluated internally, may be included in future year HMT WWE products.
- Observations (used for ML training and evaluation): NOHRSC snowfall analyses

NOHRSC observations and 24-h ensemble ML simple mean valid 0000 UTC on 20 Jan. 2025

ML Methods: Input Data (Training & Forecast Generation)

- Variables predicted: Probability of 6-h snowfall > 1, 2, and 3 inches, as well as ML ensemble simple mean ("ML best guess").
 - ML-predicted total snowfall (individual members and ensemble consensus) is being developed and evaluated internally, may be included in future year HMT WWE products.
- Observations (used for ML training and evaluation): NOHRSC snowfall analyses

NOHRSC observations and 24-h ensemble ML simple mean valid 0000 UTC on 20 Jan. 2025

0.01

ML Methods: Patches, Training, and Forecast Generation

- Patch-wise U-Net predictions are generated using 64 x 64 overlapping grid square patches.
 - Patches are stitched together to form the full CONUS prediction
 - Weighted averaging of overlapping patches & applying light smoothing to the stitched forecast field minimizes discontinuities at patch boundaries
- Ensemble HREF+ probabilities are calculated from individual member predictions using a neighborhood maximum ensemble probability (NMEP) approach.
- A label offset (a modest, constant snowfall amount added to labels in regions of non-zero observed snowfall) is used.
 - Goal of label offset is to boost squared-error penalties and prevent the ML model from over-predicting regions of light snowfall.
 - The label offset is subtracted out from the final forecast products to prevent the introduction of a non-physical high bias.

ML Methods: Hyperparameter Optimization

- Hyperband (Li et al. 2018) was used for ML hyperparameter optimization.
- Hyperparameters optimized include learning rate, depth of U-net, number of channels in hidden layers, and normalization approach.

ML Results: 30-h forecast valid 0600 UTC, 20 Jan. 2025

35

ML Results: 24-h forecast valid 0000 UTC, 15 Dec. 2024

36

Conclusions and Updates/Future Work

- All CAPS FV3-LAM ensemble members appear to accurately capture spatial patterns of precipitation/snowfall.
- No strong bias in precipitation forecasts; benefit of ensemble consensus most evident at longer lead-times.
- Forecast members using NSSL microphysics scheme (M1*) tend to underforecast snowfall (low frequency bias) – snowfall ETS is also slightly lower for NSSL (M1*) members.
- Machine learning (ML) NMEP snowfall forecasts perform well, though NMEP sometimes results in spatial over-prediction.
- ML simple mean is performing quite well in many cases during 2024-2025 testing, in some cases outperforming CAPS FV3 NWP simple mean!
- Work is continuing during the 2024-2025 HMT WWE
 - Experimental MPAS ensemble is being tested
 - ML ensemble U-net continues to be optimized and evaluated—future version using MPAS is planned once sufficient training data have been collected.

Acknowledgements (Funding and Computing Resources)

Computing:

• NSF/Texas Advanced Supercomputing Center (TACC) Frontera

Funding:

- NOAA/OAR/OWAC Testbed Grants: NA19OAR4590141 & NA22OAR4590522
- UFS R2O Grant: NA16OAR4320115

Contacts: Nathan Snook (nsnook@ou.edu) Keith Brewster (kbrewster@ou.edu)

