

A Machine Learning Approach to Automated Road-Surface Condition Predictions in Collaboration with the New York State Department of Transportation

Presented by: Carly Sutter

Dr. Kara Sulia, Dr. Nick Bassill, Dr. Christopher Wirz, Dr. Christopher Thorncroft *HMT Seminar 02/18/2025*

Outline

Part 1:

- Data
- ML algorithms
- Model design
- Model performance

Part 2:

 Application and end-user perspective (NYSDOT)

Introduction

High impact weather affects NYSDOT resource allocation, maintenance of road conditions, and traveler safety.

Goal: automatically detect weather-related road surface conditions using camera images and weather data

Example from Buffalo NY on November 19, 2022, 5 minutes apart

Model overview

Objective: road surface condition ("RSC") classification

Hand-labeled dataset

- 6 classes
- 30 locations
- 17.7k observations

For model training, the ground truth labels for a given observation (time, lat, and lon) is the hand-labeled classification

Image source: 511ny.org Archive: stored at UAlbany's xCITE lab

Hand-labeled dataset

Published paper on *Quantitative Content Analysis (QCA)* using this project as case study:

Wirz, C. D., Sutter, C., Demuth, J. L., Mayer, K. J., Chapman, W. E., Cains, M. G., et al. (2024). Increasing the reproducibility and replicability of supervised AI/ML in the Earth systems science by leveraging social science methods. *Earth and Space Science*, 11, e2023EA003364. https://doi.org/10.1029/2023EA003364

Labeling "codebook" following QCA framework

- Carefully define & set rules for labeling ⇒
 consistency and trust in the data going into the
 ML model
- Codebook & reliability trial data and results published on Zenodo: DOI: 10.5281/zenodo.8370665

Model data (input data)

Data used for model training: both image data and forecast data

Image data

• HRRR forecast data: High-Resolution Rapid Refresh, valid at time of image, collocated for each image observation

2m air tomp	2m relative	10m average	accumulated	total	total cloud
2m air temp	humidity	wind	snow	precipitation	cover

Model data summary

	Mod	el <u>input</u>	Model <u>output</u>
Observation (lat, lon, time)	Image Data	HRRR Data	Road surface condition Hand-labeled
#1		T = 271.8K RH = 93% Accumulated snow = 2"	Snow
# 17,717	03/04/23 02:00:05	T = 273.6K RH = 86% Accumulated snow = 0"	Wet

Machine learning algorithms

Convolutional neural network (CNN)

Convolutional neural network (CNN) deep learning algorithms for tasks that use *visual information*, or any data where *position matters* (including spatial and/or temporal). These are commonly used for *image recognition tasks*.

Support vector machine (SVM)

An SVM classifies data by finding the optimal *decision boundary* that separates the data into groups and maximizes the margin between the groups.

Random forest (RF)

A *combination of decision tree* classifiers that are commonly used ML algorithms that capture nonlinear relationships

Model selection:

Multiple ML algorithms Hyperparameter tuning

Model selection

Consider end-user priorities ⇒ *consider 8 metrics* (not just one metric, e.g. accuracy)

Model process - forecast road surface conditions

- Only use HRRR data (no image data for future times)
- Valid at time of labeled observations

Model process - forecast road surface conditions

- Only use HRRR data (no image data for future times)
- Valid at time of labeled observations
- Forecast hours Short: 2, 3, 4, 5, 6 Medium: 9, 12, 15 Long: 18, 24, 30, 36, 42, 48

Highlighted is the forecast hour that the selected model was trained on for that forecast group (short/medium/long)

Data splitting

Using 5-fold cross validation

- Every observation is represented in validation and test datasets
- Training data is the data that the model sees and learns from
- Validation is used for model tuning/selecting the best models
- Testing is used for assessing performance

test	val	train	train	train
_				

Data splitting

Emphasis on generalizability

Evaluation on *unseen* camera sites \rightarrow operational application

Results - Nowcast

Road surface condition nowcasting skill:

Testing accuracy: 76.1%

Note: shuffle split (each site represented in train and test) is 88.9%.

Adjusted accuracy: 82.8% Adjacent classes counted half correct: $Dry \leftrightarrow Wet \leftrightarrow Snow \leftrightarrow Severe snow$

Results - Nowcast

Road surface condition nowcasting skill:

Testing accuracy: 76.1%

Note: shuffle split (each site represented in train and test) is 88.9%.

Adjusted accuracy: 82.8% Adjacent classes counted half correct: $Dry \leftrightarrow Wet \leftrightarrow Snow \leftrightarrow Severe snow$

Metric shown is recall (out of total labeled in that class). Calculation is recall = probability of detection (POD) = True Positive / (True Positive + False Negative)

	Confusion Matrix for Testing Dataset									
snow_severe	79.98% 963/1204	13.87% 167	1.00% 12	2.08% 25	0.75% 9	2.33% 28		- 80%		
wous	9.09% 187	73.99% 1522/2057	11.18% 230	3.84% 79	1.41% 29	0.49% 10		- 60%		
_abel wet	0.46% 30	9.52% 623	73.23% 4793/6545	9.79% 641	5.96% 390	1.04% 68		- 50%		
True L dry	0.21% 13	4.22% 260	8.43% 519	84.28% 5190/6158	1.20% 74	1.66% 102		- 40%		
poor_viz	2.86% 22	0.39% 3	21.48% 165	10.55% 81	51.30% 394/768	13.41% 103		-20%		
obs	11.37% 112	5.48% 54	4.37% 43	5.18% 51	10.86% 107	62.74% 618/985		-10%		
snow_severe snow wet dry poor_viz obs Predicted Label										

		Confusion Matrix for Testing Dataset						
Compared to CNN, adding weather data for the nowcast adds	Severe snow: +5%	snow_severe	79.98% 963/1204	13.87% 167	1.00% 12	2.08% 25	0.75% 9	2.33% 28
	Snow: +15%	wous	9.09% 187	73.99% 1522/2057	11.18% 230	3.84% 79	1.41% 29	0.49% 10
	Wet: +8%	-abel wet	0.46% 30	9.52% 623	73.23% 4793/6545	9.79% 641	5.96% 390	1.04% 68
	Dry: +18%	True I dry	0.21% 13	4.22% 260	8.43% 519	84.28% 5190/6158	1.20% 74	1.66% 102
	Poor visibility: +10%	poor_viz	2.86% 22	0.39% 3	21.48% 165	10.55% 81	51.30% 394/768	13.41% 103
Metric shown is recall (out of total labeled in that class)	N/A	obs	11.37% 112	5.48% 54	4.37% 43	5.18% 51	10.86% 107	62.74% 618/985
probability of detection (POD) = True Positive / (True Po	ositive + False Negative)	:	snow_severe	snow	wet Predicte	dry ed Label	poor_viz	obs

-80%

- 70%

-60%

- 50%

- 40%

- 30%

-20%

-10%

Adding weather data fixes some camera predictions

Example:

- Ground truth hand-label: Snow
- CNN-predicted: Severe snow
- Final model: Snow

	<u>Con</u> fusion Matrix for Testing Dataset									
snow_severe	79.98% 963/1204	13.87% 167	1.00% 12	2.08% 25	0.75% 9	2.33% 28		-	- 80%	
snow	9.09% 187	73.99% 1522/2057	11.18% 230	3.84% 79	1.41% 29	0.49% 10		-	-60%	
Label wet	0.46% 30	9.52% 623	73.23% 4793/6545	9.79% 641	5.96% 390	1.04% 68			- 50%	
True dry	0.21% 13	4.22% 260	8.43% 519	84.28% 5190/6158	1.20% 74	1.66% 102			- 40% - 30%	
poor_viz	2.86% 22	0.39% 3	21.48% 165	10.55% 81	51.30% 394/768	13.41% 103		1	-20%	
obs	11.37% 112	5.48% 54	4.37% 43	5.18% 51	10.86% 107	62.74% 618/985			- 10%	
	snow_severe snow wet dry poor_viz obs Predicted Label									

But some are still "borderline" cases that are still difficult to predict correctly

Example:

- Ground truth hand-label: Snow
- CNN-predicted: Wet
- Final model: Wet (wrong)

	Con	fusion I	Matrix f	or Testi	ng Data	aset	_		
snow_severe	79.98% 963/1204	13.87% 167	1.00% 12	2.08% 25	0.75% 9	2.33% 28		- 8(0%
snow	9.09% 187	73.99% 1522/2057	11.18% 230	3.84% 79	1.41% 29	0.49% 10		- 60	0%
_abel wet	0.46% 30	9.52% 623	73.23% 4793/6545	9.79% 641	5.96% 390	1.04% 68		- 5(0%
Irue I dry	0.21% 13	4.22% 260	8.43% 519	84.28% 5190/6158	1.20% 74	1.66% 102		- 4(- 3(0% 0%
poor_viz	2.86% 22	0.39% 3	21.48% 165	10.55% 81	51.30% 394/768	13.41% 103		-20	0%
obs	11.37% 112	5.48% 54	4.37% 43	5.18% 51	10.86% 107	62.74% 618/985		- 10	0%
:	snow_severe	e snow	wet Predicte	dry ed Label	poor_viz	obs			

Results - Forecast

Recall by Class & Forecast Hour (FH)

Forecast	Road surface condition class						
hour group	Severe Snow	Snow	Wet	Dry	Poor Visibility		
Short (FH 2-6 average)	77.9%	71.2%	61.8%	84.0%	61.4%		
Medium (FH 9-15 average)	80.3%	65.4%	58.8%	85.6%	60.5%		
FH 18-48 average*	72.8%	67.0%	56.8%	82.2%	62.6%		

* Limited labeled data available for FH24-48

Forecast examples: New York State Jan 15-16, 2024

Forecast valid for Jan 15 at 7am ET **Buffalo**, NY Forecast hour 4 Snow road surface conditions Albany, NY Dry road surface conditions om18- I-787 @ Exit 2 (Po 1/15/24 06:59:44 Forecast valid for Jan 16 at 1pm ET Forecast hour 18 Continued snow conditions (some wet/dry) **Poor visibility** Snow conditions developed am18- I-787 @ Exit 2 (Port of Alba 01/16/24 12:59:46

Part 2 Application and end-user perspective

Department of Transportation

Current tool: NYSDOT - 511ny.org

Department of Transportation

Current tool: NYSDOT - 511ny.org

Addressing societal needs

NYSDOT operational interests

Benefits/opportunity for road surface condition model:

- *Frequent* updates of road surface conditions
- Covering *large geographic area (NYS)*
- Specific *camera-level predictions* (local/granular)
- Provides another perspective of road surface conditions (current methods <u>and</u> model)
- Save time for NYSDOT employees!
 - Manually logging conditions
 - Public tool every 4 hours

Public interests:

- Avoid 511ny.org stale conditions which impact public trust/reliance

January 4, 2024 at 3:20pm

Co-design with NYSDOT

Ongoing collaboration with the end-user is crucial create a useful tool

Collect feedback &

tailor features iteratively

Co-design with NYSDOT

Working iteratively and regularly with NYSDOT \Rightarrow their needs guide the development of the model

Deciding which classes to include in the model Deciding what **visually** (imgs) constitutes each class Designing model splitting by site \rightarrow operational use

Model selection

What considerations are most important for model selection?

High priority

- I. Validation accuracy
- 2. Adjusted validation accuracy⁽²⁾
- 3. Severe snow class recall

Medium priority

- 4. **Snow** class recall
- 5. Wet class recall
- 6. Dry recall

Low priority

- 7. **Poor visibility** recall⁽³⁾
- 8. Obs recall⁽³⁾

Labeled-dataset curation for supervised ML

Co-design with NYSDOT

Dashboard: A user interface will allow the NYSDOT to *visualize* and easily *use* the model predictions

Recently: Social science interviews

Road surface condition detection

Detected by machine-learning models

Choose the time to display ⁽¹⁾

Current (present) ~

Location detail:

Show at NYSDOT Camera Locations (colored dots)⁽¹⁾
 Show at All locations (shading)⁽¹⁾

Displaying current road surface conditions

End-user engagement and co-design

Social science interviews (IRB) for understanding decision making and co-development of a dashboard

Completed Jan-Feb 2025:

- 15 employees total
- 13 interviews
 - 11 were individual (one-on-one)
 - 2 were done in pairs
- Interview length was ~45 minutes each
- Two parts:
 - Part 1: understanding decision making
 - Part 2: demo ML model and dashboard

End-user engagement and co-design

Preliminary takeaways from interviews:

Wind is a major concern for NYSDOT. Blowing snow: can't maintain clear roads, poor visibility, trees/power lines

Ice prediction model would be useful

Interest in dashboard displaying the **confidence** of the predictions

Forecasting probably more useful than the nowcasting tool, but both have uses – a successful example of co-design

Tool provides a holistic (statewide) picture where the storm is and isn't – for reallocation of resources

Trust in our tool was widely varied! Most say "need to use it first"

STATE OF

Department of

Transportation

Conclusion

NYSDOT's current manual & road-surface methods

Understanding of weather-related road surface conditions

Future directions:

- Social science data analysis from interviews & subsequent model/UI updates from those
- Modeling: LSTM forecasting models, ice model, assessing model drift of selected models
- **Operationalizing dashboard**

This material is based upon work supported by the National Science Foundation under Grant No. RISE-2019758

Contact information: Carly Sutter csutter@albany.edu

