The Rapid Refresh Forecast System with an Emphasis on Winter Weather

<u>Matthew E. Pyle</u>¹, Benjamin Blake¹, Curtis R. Alexander², Shun Liu¹, Terra Ladwig², Jacob Carley¹, Stephen Weygandt² on behalf of the wider RRFS team

¹NOAA/Environmental Modeling Center, College Park, MD ²NOAA/Global Systems Laboratory, Boulder, CO

AL LA

ž

औ

K

明

RRFS status for WWE - 30 January 2025

ž

औ

K)

四日

The Rapid Refresh Forecast System (RRFS)

A UFS Application

- 3 km grid spacing over North America
- FV3 dynamical core
- Hourly updated
- 65 vertical layers
- Hybrid 3DEnVar assimilation (30 mem)
- Includes Smoke & Dust
- Deterministic forecasts to 84 h & Ensemble forecasts to 60 h, every 6 h
- Deterministic forecasts only to 18 h, other cycles

RRFS Physics and Vertical Resolution

Physics	SCHEME	REFERENCE		
PBL/Turbulence	MYNN-EDMF	Olson et al. (2019)		
Surface Layer	MYNN	Olson et al. (2021)		
Microphysics	Thompson-Eidhammer	Thompson and Eidhammer (2014)		
Climatological Aerosols	Thompson-Eidhammer	Thompson and Eidhammer (2014)		
Smoke and Dust	RAVE fire data, FENGSA scheme for dust	Ahmadov et al., Freitas et al., 2010		
Shallow Convection	MYNN-EDMF	Olson et al. (2019) Angevine et al. (2020)		
Deep Convection	saSAS	Han et al. (2017)		
Gravity Wave Physics	Small Scale and Turbulent Orographic Gravity-Wave & Form Drag	Beljaars et al. (2004) Tsiringakis et al. (2017) Toy et al. (2021)		
Land Model	RUC LSM	Smirnova et al. (1997, 2000, 2016)		
Large Lakes	FVCOM	Fujisaki-Manome et al. (2020)		
Small Lakes	CLM Lake	Subin et al. (2012), Mallard et al. (2015), Benjamin et al. (2022)		
Long and Short Wave Radiation	RRTMG	lacono et al. (2008), Mlawer (1997)		

Parameter	RRFS	HRRRv4	NAMv4
Number of levels	65	50	60
Lowest level (m)	8	8	20
Top (hPa)	2	20	2

12

ž

.

R

哭

 \square

RRFS status for WWE - 30 January 2025

- Two-way interaction between 30 member 3-km DA ensemble [] and 3-km deterministic RRFS hybrid 3DEnVar analysis []
- Partial cycle spin-up of atmosphere from GFS twice per day (RAP like), land states fully cyc'd
- Large scale information from GDAS ensemble is blended into EnKF system twice per day.

All ensemble members (in square) and deterministic/control (circle) on 3-km NA grid

DOD

60 h forecasts at 00/06/12/18 UTC

Sources of spread: EnKF ICs, GEFS LBCs, time-lagging, multi-physics, stochastic parameter perturbations(*), and fixed parameter perturbations (#)

	MP	PBL	sfc	lsm	Cu	IC/LBC
m1 (ctrl)	Thompson	MYNN	MYNN	RUC	saSAS deep	RRFS hybrid/GFS
m2	Thompson*	TKE-EDMF	GFS	RUC*	G-F dp*+sh	RRFS enkf1/GEFSm1
m3	Thompson*	MYNN*	MYNN*	RUC*	saSAS deep	RRFS enkf2/GEFSm2
m4	NSSL#	MYNN*	MYNN*	RUC*	G-F deep*	RRFS enkf3/GEFSm3
m5	NSSL#	TKE-EDMF	GFS	RUC*	G-F dp*+sh	RRFS enkf4/GEFSm4
m6	NSSL#	MYNN*	MYNN*	RUC*	saSAS deep	RRFS enkf5/GEFSm5
m7 (m1-6h)						
m8 (m2-6h)						
m9 (m3-6h)						
m10 (m4-6h)						
m11 (m5-6h)						
m12 (m6-6h)						
m13 (HRRR)	Thompson	MYNN	MYNN	RUC	None	HRRRDAS / RAP
m14 (m13-6h)						

*Thanks to Jili Dong for this work

5123

ž

औ

KS

哭

 \wedge

REFS Ensemble product generation relative to HREF

- Membership
 - All REFS domains include 12 RRFS members, CONUS and AK add 2 HRRR members to push to 14 total members
 - HREF membership sizes: CONUS (10), AK (8), HI/PR (6)
- Forecast length and frequency
 - REFS goes to 60 h, 4x/day for all domains
 - HREF goes to 48 h, 2x/day most domains
- Output grids
 - REFS uses output grids of RRFS (NAM nest regions) -3 km CONUS & AK; 2.5 km PR & HI
 - HREF is processed on 5 km HiresW output grids

औ

K

四日

Some recent RRFSv1 history

- Concerns about RRFS performance were raised in NOAA testbeds in 2023 and prior years about overly heavy rainfall and overly intense convective storms.
 - RRFS began running with parameterized convection in Aug 2023 to help mitigate these related issues.
 - FV3 dynamical core's inherent issues at 3 km were documented in a <u>white paper</u> which recommends shifting to alternate dynamics (MPAS) beyond RRFSv1.
 - <u>RRFS Beta Evaluation</u> (Jan-Mar 2024) a period of iterative tuning based on real-time and retrospective results. Positive outcome from Beta led to an initial scientific code freeze.

ž

औ

R

DOD

Some recent RRFSv1 history (cont.)

- Post initial science freeze, RRFSv1 performed poorly in 2024 Hazardous Weather Testbed (May 2024)
 - Underdid some significant convective storms (low POD)
 - This deficiency created fresh impetus to explore options to improve RRFSv1 convective performance.

ž

औ

K

四日

Day 1 00Z Composite Reflectivity (> 40 dBZ) 2024 HWT

High POD for convective storms is a key SPC performance metric

RRFS did poorly relative to the operational HRRR and experimental MPAS runs by this measure

Image courtesy Jake Vancil (OU/CIWRO/SPC)

*saSAS =

scale-aware Simplified Arakawa-Schubert (parameterized cnv)

A possible path forward for RRFSv1

- After seeing promising initial results for severe convection with an saSAS-based RRFS, more intensive reruns of the May 2024 period were made with it.
 - SPC viewed these saSAS reruns as a significant improvement over the original RRFS runs
 - This spring convection testing was augmented with initial cold season retrospective saSAS testing no red flags identified.
- The real-time deterministic RRFS began running with saSAS convection in mid-August 2024
- RRFSv1 code refrozen in late November 2024, and real-time RRFS shut down early December 2024 to enable retrospective experiments

ž

औ

R

四日

 \square

20240916 - ~20241203

CONUS 2 m T/Td, 12Z cycles

512

NORR

RRFS status for WWE - 30 January 2025

Now for some winter weather...

ž

ज़ौँ

 \approx

Winter Weather Parameters

WEASD – Water Equivalent of Accumulated Snow Depth (kg/m2)

- Apply a snow-to-liquid ratio (SLR) to get inches of snow
- A 10:1 SLR is not always representative leads to the overprediction of snowfall totals during events with marginal temps, and the underprediction of snowfall totals during events with very cold temps
- Tallied by combining snow/sleet for events where sleet (low SLR) is the primary precip type, 10:1 WEASD maps show erroneously large snow totals

RRFS status for WWE - 30 January 2025

औ

R

四日

Winter Weather Parameters

SNOD – instantaneous snow depth (m)

- Determined by the land surface model using a variable/effective SLR based on snow density
- Accounts for warm ground, compacting, melting, and sublimation processes
- EMC's MEG has advocated for users to look at accumulated SNOD (depth at fXX depth at f00) as an alternative to 10:1 SLR WEASD
 - This approach generally works well, but can struggle in early/late season snow events with initially warmer soil (from Alicia Bentley, EMC)

 \square

औ

KS

四日

 \square

Winter Weather Parameters

ASNOW (RRFS/HRRR) – accumulated snowfall (m)

- Uses a variable/effective SLR combines snow + sleet
- A good field to look at for snowfall accumulation totals
- Used in REFS for snow accumulation probabilities

TSNOWP (RRFS only) – total snow precipitation accumulation (kg/m2) – water equivalent

FROZR (RRFS/HRRR) – sleet accumulation (kg/m2) – water equivalent

FRZR (RRFS/HRRR) – freezing rain accumulation (kg/m2) – water equivalent

CPOFP – quantifies the % of hydrometeors reaching the surface as frozen precipitation (as snow/sleet)

- Freezing rain has a value of zero
- High values indicate snow accumulation is favorable, low values are indicative of mixed precip

ک

ज़ौ

- r>
- 哭
- ⊿
- 13

Western US Snowfall – 13-14 Jan 2024

- RRFS/HRRR ASNOW (variable density)
- NAM nest WEASD with a 10:1 SLR

RRFS status for WWE - 30 January 2025

*Thanks to Ben Albright (WPC) for this figure

48-h forecasts from the

12 Jan 12Z cycle

HRRR ASNOW (var den)

NOHRSC Analysis

RRFS retro ASNOW (var den)

24-h snowfall accumulation valid 13 Jan 12Z – 14 Jan 12Z

ž

औ

 \approx

四日

24-h forecasts from the

13 Jan 12Z cycle

24-h snowfall accumulation valid 13 Jan 12Z – 14 Jan 12Z

औ

x

 \square

Northeast US Snowfall – 16-17 Jan 2024

A.

x

DOD

 $\mathbf{\Lambda}$

- Note: NOHRSC only covers CONUS, so ignore the (lack of) observed snowfall over Canada
- RRFS uses FVCOM Great Lakes data (as does HRRR)

NAM Nest WEASD (10:1)

ž

औ

R

四日

 \square

12

36-h forecasts from the 16 Jan 00Z cycle

RRFS status for WWE - 30 Janual

HRRR ASNOW (var den)

NOHRSC Analysis

RRFS ASNOW (var den)

24-h snowfall accumulation valid 16 Jan 12Z – 17 Jan 12Z

NAM Nest WEASD (10:1)

ž

औ.

R

四日

 \square

12

24-h forecasts from the 16 Jan 12Z cycle

RRFS status for WWE - 30 Janual

HRRR ASNOW (var den)

NOHRSC Analysis

RRFS ASNOW (var den)

24-h snowfall accumulation valid 16 Jan 12Z – 17 Jan 12Z

Central US Freezing Rain – 22 Jan 2024

 148 freezing rain reports occurred between 12Z and 00Z, no sleet reports

ž

औ

K

四日

 Λ

- A somewhat long duration freezing rain event w/ multiple waves of freezing precip
- Precip type RRFS, HRRR, NAM nest
 - Note: NAM nest uses the NCEP dominant method; no mixed precip

哭

NOAR

RRFS status for WWE - 30 January

RRF initialized

RRFS

(f11)

Next steps for RRFS

- RRFS recently finished* running the deterministic aspect of final retrospective testing (with full DA system, over North America):
 - Jan 8 to Feb 8, 2024 (winter retro)
 - July 2023 (summer retro)
 - *May 2024 (spring/severe retro) Discovered last week that improper initial soil states were used in spinning up this retro. In the process of being rerun.
- Also hoping to run the REFS forecast ensemble for a limited number (~30 cycles) of cases
- Once retros have been analyzed, a final eval by NWS forecasters and other stakeholders (planned for 4/1 to 6/15) will inform an NCEP decision on whether to go forward with RRFSv1 or not.

12

ž

औ

K

明

 \square

RS

四

- RRFS will be a *major* change
 - Consolidating a large fraction of operational CAM guidance with a single, unified 3-km system covering North America
- Much work remains to be done (and approvals need to be given) if it is to be implemented about one year from now.

Thanks for listening!

Email: Matthew.Pyle@noaa.gov

Website for comparison graphics, experiment change log, model namelists, verification statistics: <u>https://www.emc.ncep.noaa.gov/users/emc.campara/rrfs</u>

Supplemental Slides

112

ž

ॵ

 \approx

哭

 \square

RRFSv1 Implementation Status and complicating factors

- RRFS currently is targeting an early calendar 2026 implementation, but many hurdles remain, including getting scientific and technical approval of the package
- Factors complicating the RRFS implementation timeline:
 - **Implementation moratorium** (currently scheduled to cover a year starting in Aug 2026 to allow NCEP production suite to be ported to new machine)
 - GFS/GEFS implementations big systems also targeting the pre-moratorium timeframe. RRFS is coordinating with GFS/GEFS teams to avoid targeting the same time

ž

औ

KS

四日

 \square

12 h forecasts of composite reflectivity valid 06Z 8 May 2024

Grell-Freitas (parameterized cnv) - what was running in RRFS at time of HWT

Comparison provided by Eric Aligo

RRFS status for WWE - 30 January 2025

ž

औ

K

DOD

 \square

112

NOAA

Composite 3 h Precipitation Histograms

total counts from six cases (May 2024)

RRFS status for WWE - 30 January 2025

ž

RRFS status for WWE - 30 January 2025

ž

औ

R

DOD

 \square

13

HRRR ASNOW (var den)

NOHRSC Analysis

RRFS retro ASNOW (var den)

24-h snowfall accumulation valid 13 Jan 12Z – 14 Jan 12Z

RRFS status for WWE - 30 Janua

36-h forecasts from the 13 Jan 00Z cycle

NAM Nest WEASD (10:1)

ž

औ

 \approx

四日

 \square

12

RRFS status for WWE - 30 Janua

HRRR ASNOW (var den)

NOHRSC Analysis

RRFS ASNOW (var den)

24-h snowfall accumulation valid 16 Jan 12Z – 17 Jan 12Z Observed Precipitation Type

512

Š

NAM Nest

rain

20Z (f14)

NAM Nest

rain

mix

Precipitation Type

- RRFS utilizes the same method as the RAP/HRRR for calculating precipitation type
- Based on the explicit prediction of hydrometeors (snow, rain, graupel) reaching the surface from the Thompson microphysics
- Can get 'yes' answers for multiple types
- Computes snow fraction (fallen snow in past hour / total snow + rain over past hour) to determine potential for snow/rain/freezing rain
- Also checks fall rate for graupel to determine potential for sleet (IP)

ž

Ä

औ

四日

77

Smoke and Dust

- Included in 3-km RRFS over North America
- Input data: RAVE Emissions
 - $\circ~$ Fire Radiative Power \rightarrow plume rise
 - Fire Radiative Energy → estimate emissions

 $\begin{array}{l} & \hbox{\bf RAVE} \rightarrow \underline{R} egional \ Hourly \ \underline{A} dvanced \ Baseline \ Imager \ (ABI) \ and \\ \underline{V} isible \ Infrared \ Imaging \ Radiometer \ Suite \ (VIIRS) \ \underline{E} missions \end{array}$

Fire emissions domain wide

3 km vertically integrated smoke forecast from 26 June 2023 depicting impact from Canadian wildfires

*Thanks to J. Romero-Alvarez (GSL), R. Ahmadov (GSL), B. Baker (ARL), and P. Bhattacharjee (EMC) for material on this slide

RRFS status for WWE - 30 January 2025