

·3.

 \approx

The Weather Prediction Center's Winter Weather Experiment: Plans for the 15th WWE (2024-2025)

- TOT

W. Massey Bartolini^{1,2}, James Correia Jr^{1,2}, Sarah Trojniak^{1,2}, Tomer Burg^{1,2}, Kirstin Harnos², James Nelson² ¹CIRES/CU Boulder ²NOAA/NWS/NCEP/WPC WWE/PEAR Seminar Series - 21 January 2025

Review: 14th Winter Weather Experiment: HMT @ WPC

R

DOL

1

ž

Retrospective events were selected from Jan-Mar 1

Immersive forecast experiment conducted over 3 weeks, simulating Days 3,2,1 progression for both **snow** (9 cases) and **freezing rain** events (3 cases).

Goals: Generate insight on...

- Experimental models
 RRFS/REFS @EMC | FV3 and ML @CAPS-OU
 - Funded projects

SLR @U-Utah | FRANA @CIWRO/NSSL | MET Tools @NCAR/WPC | lake-effect snow @GLERL | ensemble soundings (WPC-HMT collab. w/ SPC)

Winter phenomena

mesoscale snow bands | lake-effect | freezing rain | SLR | snow squalls | terrain challenges

Process: engaged researchers, forecasters, developers in a pseudo-operational environment through forecast exercises, model evaluation & verification, with a seminar series and focus groups (funded projects)

WPC-HMT 14th Annual Winter Weather Experiment (2023-2024) Participation: All Weeks

Comparison of FRANA to freezing rain local storm reports (LSRs):

- FZRA footprint generally well-captured
- Maximum FRANA amounts (>0.25") overestimated compared to LSRs, especially to the northeast into MO/IL

23 January 2024 Freezing Rain Case Study

FRANA: Overall Subjective Evaluation Results

WWE intensive week participants answered evaluation survey questions about FRANA: **How well did it perform in terms of its footprint and maximum amounts?**

FRANA footprint (0.01" flat ice) was generally accurate but case results showed it **overestimated max amounts in some cases from 2023-24**.

Despite biases which are being addressed in the current winter season, participants generally found FRANA **useful as an observational dataset**.

S. Plains / Ozarks Freezing Rain Event: 22-23 Jan 2024

New REFS Capability: Freezing Rain QPF Probabilities

During WWE, we investigated REFS FZRA QPF probs, found them useful esp. for footprint forecast activity

औ

 \approx

Would be better to have FRAM probs to align with NWS forecast products (flat ice)

Participant MSTP Forecasting and Verification

Last year, we forecasted both the FZRA footprint (0.01" flat ice) and maximum amount (selected by individual forecaster) for freezing rain cases:

जै.

Department of Commerce // National Oceanic and Atmospheric Administration // 7

16-17 February 2024 Mesoscale Snowband Case Study

12

NOAR

Northeast Mesoscale Snowband Event - 17 Feb 2024

Low-predictability, narrow mesoscale snowbands with very high SLR (20-25:1 observed)

MRMS 24h QPE

NOHRSC 24h Snowfall

<u>द्वौँ</u>

 \approx

DOL

 \mathbb{A}

1

CAPS Ensemble Mean Products: Day 3 Lead Time

In this case:

औ

 \approx

DOL

12

We found local prob. matched mean (LPM) products to be most useful for 6h snow time windows

Alone, new spatially aligned mean (SAM) product did not provide as much value to forecasters

CAPS Ens., Init: 00 UTC 14 Feb 2024 Valid: 06 UTC 17 Feb 2024 (f78)

New Capability: REFS Prob. Matched Mean (PMM) Snowfall

🍯 🖤

CAM guidance struggled to capture mesoscale snowfall amounts...

 Some hints of enh. mesoscale banding but errors in magnitude and location

ž

जौ

x

THE

 $\mathbf{\Lambda}$

1

- At shorter lead times, HRRR
 slightly better
 than RRFS
- Difficult forecast challenge even at Day 1 lead time

VOHRSC

Univ. of Utah Machine Learning SLR Project ž

A.

 \approx

Machine learning SLR based on RRFS model inputs, used to create unique snowfall output

哭

Utah ML SLR has slightly higher values than raw RRFSp1 output, but still struggled to capture outlier event (20:1 SLRs observed)

 $\mathbf{\Lambda}$

12

Opportunity for future research and development

24h ASNOW

1h SLR

RRFSp1

Department of Commerce // National Oceanic and Atmospheric Administration // 13

Utah ML

Yet, mesoscale ingredients for heavy snowfall were still present in CAMs (in hindsight)

 \approx

DOD .

÷ờ

Despite modest snowfall forecasts, CAM forecasts had **strong signal for mesoscale lift in the general area** (fronto., warm air adv. at 850-700 hPa)

 \mathbf{A}

1

Forecast soundings had deep near-isothermal, saturated layer between -12 and -18 °C (dendritic growth zone)

Using HMT sounding viewer tools, we noted a consistent cold bias in some REFS members...

 Noted in REFS m2, m5 (GFS PBL/SL scheme)

ž

ज़ौ

 \approx

明

 \square

12

- Only in cases over new or existing snowpack
- Found several examples across different regions of the U.S. during the winter

14th WWE: Case Summary and Conclusions

Freezing rain case (23 Jan 2024):

औ

x

DOD

1

- Despite ongoing work addressing bias and calibration, FRANA is a useful tool for assessing FZRA amounts
- Extending REFS development of freezing rain outputs with FRAM post-processing would benefit NWS operations

Heavy snow case (16-17 Feb 2024):

- Deterministic and ensemble snowfall forecasts struggled to predict mesoscale snowband location/intensity, but ens. tools like prob. matching helped (somewhat)
- How to develop research-to-operations tools
 that align with ingredients for heavy snowfall?

WWE goal: generate insight on winter weather forecast challenges

Utah ML SLR

15th Winter Weather Experiment: HMT @ WPC

Retrospective events are being selected (Nov - Feb)

Immersive forecast experiment will be conducted over 3 weeks, simulating days 3,2,1 progression for both snow and freezing rain events.

Goals: Generate insight on...

- Experimental models
 REFS @EMC | FV3 and ML @CAPS-OU | MPAS @GSL, NSSL
 - Funded projects

SLR @U-Utah | FRANA @CIWRO/NSSL | lake-effect snow @GLERL | ensemble soundings (WPC-HMT collab. w/ SPC)

Winter phenomena

mesoscale snow bands | lake-effect | freezing rain | SLR | snow squalls | terrain challenges

औ

 \approx

THE

11 21 23 **Process:** engaging researchers, forecasters, developers in a pseudo-operational environment through forecast exercises, model evaluation & verification, with a seminar series and focus groups (funded projects)

Hybrid and virtual options: registration is still open!

WWE 2024-2025 Plans - Activities and Tools

Forecasting Activities

औ

 \approx

DOD

 $\mathbf{\Lambda}$

12 1-

- MSTP (Maximum Snowfall and Timing Product)
 - Predict snowfall and freezing rain extremes for Days 1-3: assess spatial extent, magnitude, timing uncertainty
- Sounding Viewer Activity
 - Assess thermodynamic profiles from CAMs for three locations of interest during a case study, predict timing of heavy snowfall, p-type transitions for each location

Science Seminars (Tue/Thu, 1pm ET)

WWE 2024-2025 Plans - Activities and Tools

Evaluation/Verification Activities

- RRFS, CAPS (FV3); CAPS, GSL, NSSL (MPAS)
 - Help provide feedback to developers by verifying and evaluating FV3 and MPAS forecasts against current operational models
 - Get forecasting experience with the RRFS, which is planned to become the new CAM ensemble for the NWS, replacing the HREF

Machine Learning Products

औ

K

THE

 $\mathbf{\Lambda}$

12

 Can ML methods improve ensemble products and probabilities for snowfall and SLR forecasts?

WWE 2024-2025 Plans - Activities and Tools

Monday	Tuesday	Wednesday	Thursday	Friday
9:30 am - Orientation and Introductions	9:30 am - Verification for Case 1	9:30 am - Fcst. Brief Case 2	9:30 am - Fcst. Brief Case 3	9:30 am - Fcst Brief Case 3
10:30 am - Fcst. Brief Case 1		10 am - Day 1 MSTP and sounding activity	10 am - Day 3 MSTP and sounding activity	10 am - Day 1 MSTP and sounding activity
11 am - Day 2 MSTP and sounding activity	11:30 am - Case 1 discussion	11:30 am - Verif. for Case 2	11:30 am - Fcst. Brief Case 3	11:30 - Start verif. for Case 3
12 pm - Lunch	12 pm - Lunch	12 pm - Lunch	12 pm - Lunch	12 pm - Lunch
1 pm - Continue Day 2 activity	1 pm - WWE Seminar	1 pm - Verif. for Case 2	1 pm - WWE Seminar	1 pm - Verif. for Case 3
2 pm - Science discussion activity	2 pm - Fcst. Brief Case 2		2 pm - Day 2 MSTP and sounding activity	
3 pm - Fcst. Brief Case 1	2:30 pm - Day 2 MSTP and sounding activity	3:30 pm - Case 2 discussion		3 pm - Case 3 discussion
3:30 pm - Evaluate Day 1 models	4 pm - Science discussion activity		4 pm - Science discussion activity	3:30 pm - End-of-week discussion
5 pm - End	5 pm - End	5 pm - End	5 pm - End	5 pm - End

Intensive week schedule (draft):

 Planning to forecast and evaluate 3 cases per intensive week

♪

1

औ

 \aleph

THE

NOAA

Key Datasets

CAPS: 10-member FV3 and MPAS mixed physics ensemble
 REFS: 14-member FV3 mixed physics ensemble with time lagging, including the HRRR
 GSL: deterministic MPAS forecast
 NSSL: deterministic MPAS forecast

 \mathbb{A}

	Experiment	Microphysics	PBL	Surface	LSM	Cu Parameter	IC/LBC (like system)	Notes
				F۱	/3-LAM Meml	bers		
	MOBOLO	Thompson	MYNN	MYNN	NOAH	None	GFS /GFS	AI-1
	M1B0L0	NSSL	MYNN	MYNN	NOAH	None	GFS/GFS (WoF)	AI-2
	M1B0L2	NSSL	MYNN	MYNN	RUC	None	GFS/GFS (RRFSm1)	
	M0B2L1	Thompson	TKE-EDMF	GFS	NOAHMP	None	GFS/GFS (GFSv16)	AI-3
	M0B2L2	Thompson	TKE-EDMF	GFS	RUC		GFS/GFS	AI-4
					MPAS Membe	ers		
	MOBOL2_MP	Thompson	MYNN	MYNN	RUC	None	GEFS_m1	GSL-01
	M1B0L2_MP	NSSL	MYNN	MYNN	RUC	None	GEFS_m2	NSSL-01
Naming	MOBOLO_MP	Thompson	MYNN	MYNN	NOAH	None	GEFS_m3	NCAR-01
M: Microphysics	M1B0L0_MP	NSSL	MYNN	MYNN	NOAH	None	GEFS_m4	
B: Boundary Layer L: Land Sfc Model	M1B0L2Cx_ MP	Thompson	MYNN	MYNN	NOAH	SA-New-Tiedtke	GEFS_m5	

L: Land Sfc Model P: GFS Initial/Bndy Cdx C: Cu Parameterization

PI: Initial perturbations

ž

औ

x

THE

 \square

12

Rapid Refresh Forecast System Ens. (REFS) [as of Nov 2024] ž

Ensemble forecasts at 00/06/12/18 UTC

Sources of spread: EnKF ICs, GEFS LBCs, time-lagging, multi-physics, Ref stochastic parameter perturbations(*), and fixed parameter perturbations (#)

	MP	PBL	sfc	Ism	Cu	IC/LBC
m0 (ctrl)	Thompson	MYNN	MYNN	RUC	saSAS deep	RRFS hybrid/GFS
m1	Thompson*	TKE-EDMF	GFS	RUC*	G-F dp*+sh	RRFS enkf1/GEFSm1
m2	Thompson*	MYNN*	MYNN*	RUC*	saSAS deep	RRFS enkf2/GEFSm2
m3	NSSL#	MYNN*	MYNN*	RUC*	G-F deep*	RRFS enkf3/GEFSm3
m4	NSSL#	TKE-EDMF	GFS	RUC*	G-F dp*+sh	RRFS enkf4/GEFSm4
m5	NSSL#	MYNN*	MYNN*	RUC*	saSAS deep	RRFS enkf5/GEFSm5
m6 (m0-6h)						
m7 (m1-6h)						
m8 (m2-6h)						
m9 (m3-6h)						
m10 (m4-6h)						
m11 (m5-6h)						
m12 (HRRR)	Thompson	MYNN	MYNN	RUC	None	HRRRDAS / RAP
m13 (m12-6h)						

*Thanks to Jili Dong for this work

x

 \mathbb{A}

1

A

WWE Participation

Contact: massey.bartolini@noaa.gov

Here's how to join us:

ž

औ

 \approx

四日

 $\mathbf{\Lambda}$

12

- WWE/PEAR seminar series (Nov-March): open to all, Google Meet
 - Tuesdays/Thursdays, 1 pm Eastern 0
- Intensive weeks: open to all, virtual (Google Meet), possible in-person (WPC)
 - Dates: Feb 10-14, Feb 24-28, Mar 10-14 Ο
- Focus groups (FRANA, road hazards): NWS forecasters only
 - January-March, virtual (Google Meet) Ο
- Longer term:

Seminars start (Nov)

Always open to suggestions for testing of new R2O ideas, or 0 ntensives Focus groups challenging/low-predictability winter weather cases Seminars end (March)

This seminar

FebiMari

WWE intensive

week registration